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When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental sam-
ples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence
are often encountered. The objective of this study was to develop a robust and automated quantitative FISH
method for complex environmental samples, such as manure and soil. The method and duration of sample
dispersion were optimized to reduce the interference of cell aggregates. An automated image analysis program
that detects cells from 4�,6�-diamidino-2-phenylindole (DAPI) micrographs and extracts the maximum and
mean fluorescence intensities for each cell from corresponding FISH images was developed with the software
Visilog. Intensity thresholds were not consistent even for duplicate analyses, so alternative ways of classifying
signals were investigated. In the resulting method, the intensity data were divided into clusters using fuzzy
c-means clustering, and the resulting clusters were classified as target (positive) or nontarget (negative). A
manual quality control confirmed this classification. With this method, 50.4, 72.1, and 64.9% of the cells in two
swine manure samples and one soil sample, respectively, were positive as determined with a 16S rRNA-targeted
bacterial probe (S-D-Bact-0338-a-A-18). Manual counting resulted in corresponding values of 52.3, 70.6, and
61.5%, respectively. In two swine manure samples and one soil sample 21.6, 12.3, and 2.5% of the cells were
positive with an archaeal probe (S-D-Arch-0915-a-A-20), respectively. Manual counting resulted in correspond-
ing values of 22.4, 14.0, and 2.9%, respectively. This automated method should facilitate quantitative analysis
of FISH images for a variety of complex environmental samples.

Fluorescence in situ hybridization (FISH) is a method that is
used to detect specific RNA or DNA sequences in situ with
fluorescently labeled oligonucleotide probes (4, 10). This tech-
nique is used widely in environmental microbiology and clin-
ical diagnostics (6). Although FISH has many advantages,
automated analysis of FISH images remains challenging. The
intensities of positive signals may be different in different ex-
periments, even for the same sample. The differences in inten-
sity are due to a number of factors, including the metabolic
state of the cells, the hybridization conditions, and the image
acquisition parameters. Many types of environmental samples
have additional complications due to the presence of cell ag-
gregates and nonuniform background fluorescence.

The basic task in analysis of FISH images is to classify cells
into two groups: target (positive) cells and nontarget (negative)
cells. This classification is typically based on a threshold; i.e., all
cells with fluorescence intensity higher than a certain threshold
are considered target cells, and other cells are considered non-
target cells. The simplest approach for setting a threshold is to
choose a fixed value above the background level (26). As noted

above, fluorescence intensity varies between experiments, so
the threshold is often set manually for each experiment. An-
other common approach is to set a fixed signal-to-noise ratio
(14, 23, 25). Pernthaler et al. used a fixed signal-to-noise ratio
and defined the threshold as the mean background gray value
of a FISH gray image multiplied by a signal-to-noise factor
(25). The factor was empirically determined based on manual
counting and varied from 110 to 200%, suggesting that it may
require adjustment for each experiment. Using an alternative
approach, Langendijk et al., set the threshold at the 95th per-
centile of the fluorescence intensity distribution of the negative
control (21). However, as these authors noted, such a threshold
is also not optimal, since the overlap of two fluorescence dis-
tributions in combination with a high fraction of potential
target cells resulted in underestimation of the hybridization
percentage. Furthermore, this method relies on comparable
absolute intensities from two hybridizations (negative control
and experiment), but as noted above, there is often substantial
variability in intensities even in duplicate experiments. None of
these methods is well suited for analysis of samples containing
mixtures of cell aggregates and individual cells or samples with
variable backgrounds.

Because the intensities of background, target cell, and non-
target cell signals vary within an image and among experi-
ments, threshold-based classification methods appeared to
have intrinsic problems. We turned to the idea of cluster anal-
ysis, i.e., distinguishing groups within a data set, as a way of
handling this variability. To classify complex biological signals,
several cluster analysis methods have been developed, includ-
ing model-based clustering (13), neural network classification
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(5), and c-means clustering (12, 15). Mixed model-based clus-
tering with a Bayesian classifier has been used successfully for
detecting chromosomal abnormalities in nuclei or for detecting
breast cancer (13, 22); however, it has not been used with
microorganisms or with environmental samples. Neural net-
work classification has been used to determine bacterial abun-
dance and morphology in natural aquatic communities (5).
Both of these techniques require extensive experience in com-
puter science, and for the neural network classification ap-
proach a specific data set is required for training. c-means
clustering (also known as k-means clustering) is a method for
arranging data points into a specified number of groups, or
clusters, such that the data points within a group are more
similar than the data points for different groups. Fuzzy c-means
clustering (FCM) is a modification of c-means clustering in
which a data point can belong to more than one cluster (for
example, a data point can be classified as 60% cluster 1 and
40% cluster 2), and this additional flexibility is helpful when
complex environmental samples are examined. FCM clustering
has been used to analyze DNA microarray data (12, 30) and to
recognize coregulation of gene expression (15), but prior to
this study it had not been applied to analysis of FISH images.

In this study, an automated method for analyzing FISH
images with FCM was developed using swine manure and soil
as representative complex environmental samples. The auto-
mated, quantitative image analysis method was validated by
comparing results obtained with this method with manual
counts.

MATERIALS AND METHODS

Sample collection, fixation, and dispersion. The swine manure samples used in
this experiment were obtained from commercial production facilities in Illinois
(18). Two-hundred-gram manure samples from a natural farm (designated NF)
were collected from the floor of a building that housed pigs, which was covered
with straw and soil, and homogenized. At a conventional farm (designated CF),
200 g of manure was collected from pits underneath the slotted floor of a building
that housed pigs and was homogenized. Samples from these pits contained a
mixture of dilution water, swine waste, straw, and dust. Five kilograms of topsoil
was collected from the surface of a cornfield at an Illinois research farm. Stones
were removed, and soil samples were homogenized with a blender.

Samples were fixed using paraformaldehyde and ethanol separately as de-
scribed previously (11). Briefly, samples were incubated in 4% paraformaldehyde
or 100% ethanol (AAPer Alcohol & Chemical, Shelbyville, KY) for 2 h on ice.
The paraformaldehyde-fixed samples were washed three times in phosphate-
buffered saline (PBS) (130 mM NaCl, 10 mM sodium phosphate; pH 7.2).
Following fixation, the samples were resuspended in PBS-ethanol (1:1, vol/vol)
and stored at �20°C. Subsequently, the fixed swine manure samples were diluted
(1:10) in 1� PBS, and the fixed soil sample was diluted (1:100) in 0.1% sodium
pyrophosphate (NaPPi) buffer (20). Then 10 �l of a diluted sample was sonicated
in 2 ml of 1� PBS (swine manure) or 0.1% NaPPi buffer (soil) with a sonic
dismembrator (5-s pulse; output, 250 W; variable duration; model 500; Fisher
Scientific, Pittsburgh, PA) and filtered through a black 0.22-�m-pore-size poly-
carbonate membrane (diameter, 25 mm; Osmonics, Minnetonka, MN). Cells
were transferred from the filters to gelatin-coated slides by manually pressing the
filters onto the slides for at least 10 s. The gelatin-coated slides were prepared by
using the protocol of Amann et al. (2). The efficiency of transfer from the
polycarbonate membrane to the microscope slide was evaluated by comparison
of the numbers of cells on membranes with and without transfer. The back-
ground contamination was quantified by filtering the same volume of 1� PBS or
NaPPi buffer for corresponding samples, and the values obtained were
subtracted from the cell counts.

Microscopic analysis. For FISH experiments, two 16S rRNA-targeted oli-
gonucleotide probes were used: the general bacterial probe Bact0338 (S-D-
Bact-0338-a-18; 6-carboxyfluorescein [6-FAM] labeled; W. M. Keck Center for
Comparative and Functional Genomics, Urbana, IL) (1) and the general ar-
chaeal probe Arch0915 (S-D-Arch-0915-a-A-20; Alexa488 labeled; Invitrogen

Corporation, Carlsbad, CA) (28). FISH was performed as previously described
(11), except that 15 �l hybridization solution was mixed with 1 �l (50 ng/�l)
probe, and the hybridization and wash temperatures were 46 and 48°C, respec-
tively. Following FISH, slides were incubated in a 1-�g/ml 4�,6�-diamidino-2-
phenylindole (DAPI) (Sigma Chemical, St. Louis, MO) solution for 5 min, rinsed
twice with 1 ml distilled deionized water, air dried, and mounted with Citifluor
(Marivac Limited, Halifax, NS, Canada). Negative control experiments without
probes were performed for all samples. Slides were observed using a magnifica-
tion �630 with a Zeiss Axioskop 40 microscope equipped for both light and
fluorescence microscopy (Carl Zeiss, Oberkochen, Germany) using a green filter
set (excitation wavelength, 480 nm; emission wavelength, 535 nm; model 41001;
Chroma Technology Corp., Rockingham, VT) for cells hybridized with FAM-
and Alexa488-labeled probes and a near-UV filter set (excitation wavelength,
350 nm; emission wavelength, 460 nm; model 31000; Chroma Technology Corp.,
Rockingham, VT) for DAPI-stained cells. Images were acquired from 15 random
locations using a monochrome camera (AxioCam MRm; Carl Zeiss Micro-
Imaging, Inc. Thornwood, NY) and exposure times of 5, 2, and 0.5 s for FAM-
labeled, Alexa488-labeled, and DAPI-labeled images, respectively. The resulting
gray images were saved in eight-bit tagged image file (tif) format. In this format
the intensity is represented by an integer value between 0 (black) and 255
(white). The image size was 1,388 by 1,040 pixels (1 pixel � 0.1027 �m). All
experiments were carried out in duplicate.

Automated image processing. The image-processing protocol was designed to
detect individual objects in DAPI-labeled images and to recover two types of
data from the corresponding FISH images, data describing the individual objects
and data describing the background.

(i) Recognition of cells and background. First, DAPI-labeled images were
locally equalized to obtain more uniform distributions and intensities and better
contrast. The size of the region to be equalized was optimized based on a
comparison with actual cell sizes, which resulted in selection of a 4- by 4-pixel
window. Following local equalization, individual cells were detected through
binarization, using a threshold set automatically with an entropy algorithm in-
tegrated in Visilog (version 6; Noésis, Les Ulis, France) (19). Areas with average
intensities above this threshold were set to 1, and all other areas were set to 0.
To separate overlapping cells, a fast watershed algorithm was used (29). The
resulting images were cleaned with a median filter to remove noise. The median
filter replaced every pixel with the average value (0 or 1) of the encompassed 3-
by 3-pixel square. The resulting images were used as DAPI masks to determine
the discrete locations of cells within the FISH image. Statistical differences
between counts obtained with DAPI masks and counts obtained by manual
counting were analyzed by a paired t test with the R statistical program (version
2.3.1; http://www.r-project.org/). To generate a background mask, DAPI masks
were first inverted, so that background areas were analyzed rather than cells. The
background area was then eroded (reduced in size) to exclude artificially high
background measurements in the immediate vicinity of bright cells. The erosion
process replaces every pixel with the minimum value (0 or 1) within the struc-
turing element of 8 pixels. The resulting background masks were used to deter-
mine the average intensities of background areas in FISH images.

(ii) Feature extraction. The DAPI mask and the background mask described
above were overlaid on the corresponding FISH image to detect the regions used
for analysis. For each object detected in the DAPI mask, the area, perimeter,
shape, length, width, location, maximum intensity, mean intensity, total intensity,
and mean background were retrieved automatically. The entire area of the
background mask was used to calculate the mean background intensity for a
given image. For all analyses except those utilizing signal-to-noise ratios, the
mean background intensity was subtracted from the maximum and mean inten-
sities.

The entire image-processing procedure was programmed with VBA (Visual
Basic for Applications) using the image analysis software Visilog. Parameters for
each cell were exported to a data file with tab-delimited text format for analysis
with standard spreadsheet software. This VBA program is available for down-
load from the corresponding author’s website (http://www.cee.uiuc.edu/people
/jzilles/). Using this procedure, the average time for analyzing each image was
less than 20 s with a 2.4-GHz Pentium 4 personal computer with 512 Mbytes of
memory.

Classification through FCM. FCM analysis was performed for the maximum
and mean intensities of the cells using FuzME, a Windows program (http://www
.usyd.edu.au/su/agric/acpa). The number of clusters (c) was set at 10 in the final
method, while the degree of fuzziness was always set at the default value of 1.3.
During this analysis, principle-component analysis was used to maximize the
spread of the intensity data. The resulting clusters were classified as positive or
negative by comparison of the cluster centroids with the mean values for maxi-
mum intensity obtained from the negative control (no probe). This classification
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was verified by manually checking the positive and negative clusters closest to the
threshold. The positive percentage (percentage of target cells) was calculated
based on the number of cells in positive clusters divided by the total number of
cells. FCM and manual results were compared using the paired t test with the R
statistical software.

RESULTS AND DISCUSSION

Optimization of sample dispersion. The swine manure sam-
ples used in this study contained large aggregates of cells, and
these aggregates interfered with automated FISH analysis.
Based on qualitative microscopic analysis, sonication with a
sonic dismembrator was identified as the best method to dis-
perse the aggregates. When this method was used, almost no
cell aggregates remained, while the four other methods (vor-
texing, shearing with a syringe and needle, mechanical homog-
enization, and sonication in a sonication bath, as described in
the supplemental material) produced samples that still con-
tained many large aggregates. The efficiencies of transfer from
the polycarbonate membranes to the microscope slides were
approximately 77, 85, and 69%, for NF manure, CF manure,
and soil, respectively. During this analysis, no pattern was
observed for the morphology of cells that were retained on the
membrane, but it is possible that some types of microorgan-
isms were preferentially transferred, biasing the results.

The sonication time was then optimized for each sample
type to maximize the dispersal of large aggregates, while min-
imizing cell lysis (see the supplemental material). The sonica-
tion times used in the remainder of this work were 15, 30, and
15 s for NF manure, CF manure, and soil, respectively. Using
this protocol, a relatively uniform particle size was observed;
i.e., more than 96% of the particles were particles that had an
area less than 5 �m2. This homogeneous particle size reduced
the interference of aggregates and facilitated image analysis.
Fortuitously, following this treatment, a more homogeneous
background with relatively similar intensities was also ob-
served, possibly due to the breakup of debris and inorganic
particles during the sonication treatment.

Validation of cell recognition. The objectives of this analysis
were to automatically detect cells in DAPI images and to
determine fluorescence intensities for the cells in the corre-
sponding FISH images. DAPI masks were generated automat-
ically as described above. To validate whether the binarized
DAPI masks were accurate, 30 random DAPI images were
selected, and automatically binarized DAPI masks were com-
pared with the original DAPI images. The numbers of cells
recognized in DAPI images were not significantly different
from the manual counts (P � 0.05). A qualitative comparison
also suggested that the cell shapes in the binarized DAPI
images were similar to the cell shapes in the original DAPI
images (representative images are shown in Fig. 1). These
results demonstrated that the automated procedure accurately
detected cells.

Evaluation of threshold methods. The intensity information
was converted into a classification of cells as target or nontar-
get cells using two commonly used methods: using a fixed
threshold above the background level (26) and using a fixed
signal-to-noise ratio (14, 23, 25). To set thresholds, five FISH
images from each sample were analyzed manually, and the
percentage of target cells based on the number of total cells
was calculated for each image. For each of the five images the

threshold was adjusted until the percentage of target cells
matched the manual counts for the image, and the resulting
five thresholds were averaged and used to analyze the entire
set of images in the experiment.

The thresholds showed surprising variability. For images
from a single experiment (CF manure), the fixed thresholds
ranged from 3.90 to 9.15. Although the differences may appear
to be slight, the results were very sensitive to the threshold;
applying the lowest and highest thresholds to the entire set of
images decreased the percentage of target cells from 75.4 to
35.7%. Counting multiple images and using an average thresh-
old reduced but did not eliminate this problem, at least in part
due to variations between experiments. Using the average
threshold from a duplicate FISH experiment increased the
percentage of target cells by 15.1% for CF manure (Table 1).
Similar results were observed for FISH experiments with probe
Arch0915 and with thresholds based on signal-to-noise ratios
and also for the other two samples with both probes (Table 1).

Although methods in which a fixed threshold above the
background level or a fixed signal-to-noise ratio is used are
simple and straightforward and can give good results if the
sample and background fluorescence intensities are uniform
and consistent, the results in Table 1 indicate that these meth-
ods were not suitable for swine waste and soil samples. The
need to perform manual counting to select the threshold for
each individual replicate made this approach impractical.

Classification through FCM. To avoid the problems associ-
ated with threshold-based approaches when the intensities for
the background, target cell, and nontarget cell signals varied
within an image and among experiments, we turned to the idea
of cluster analysis, i.e., distinguishing similar groups within a
data set, using FCM. The idea behind this method is that the
intensities of target cells should be more similar to each other
than to the intensities of nontarget cells, whether or not the
absolute intensities of target cells are constant in an image or
in duplicate experiments. Good separation in cluster analysis
depends on appropriate selection of the number of clusters.
We investigated a number of approaches to optimize this se-
lection. The initial estimates were based on the 13 major bac-
terial groups observed by Cotta et al. in their clone library
analysis of swine waste samples (9) and six major bacterial
groups observed in soil samples by Kobabe et al. (20). Using a
more formal approach, we calculated the fuzziness perfor-
mance index and modified partition entropy with numbers of
clusters ranging from 2 to 15 (16). This analysis sometimes
suggested a value less than 5 clusters but most often returned
values of 6 to 10 clusters. Our final determination of whether
the clustering was successful was based on whether the result-
ing clusters were clearly distinguishable as positive or negative.
When less than five clusters were used, the clusters retrieved
contained similar numbers of positive and negative cells, pre-
venting proper classification. Burrough et al. also suggested
that the optimal number of clusters should be chosen based on
the required degree of detail (7). Therefore, we selected a
more conservative value, 10 clusters, in the remaining range of
6 to 10 clusters. Considering that this value successfully clus-
tered FISH data obtained with three sample types and two
probes, we believe that it is suitable for routine analysis of
FISH images from environmental samples.

The results of FCM clustering (c � 10) for ethanol-fixed CF
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manure samples are shown in Tables 2 and 3. The resulting 10
clusters were classified as positive or negative using a fixed
threshold approach; in contrast to classification with fixed
thresholds for individual objects, subsequent validation dem-
onstrated that the same threshold applied to duplicate exper-
iments and even to different probes with the same label. The
threshold used was the average value for the maximum inten-
sity of each cell in the negative control (no probe) for the
sample. Hybridizations with an antisense bacterial probe were
also performed but could not be used as negative controls
because of highly variable fluorescence in both the background
and cell areas, as observed previously with soil samples (8).
The average values (standard errors) for the maximum inten-
sity for negative controls without probes for the three sample
types, NF manure, CF manure, and soil, were 6.24 (0.11), 6.03
(0.46), 5.69 (0.15), respectively, and these values were used as
thresholds for classification.

To validate this classification, the clusters on either side of
the thresholds were checked manually. Fifty cells from each of
these two clusters were randomly selected, interspersed, clas-

sified manually, and separated by clusters. The results vali-
dated the fixed threshold classification of clusters for all three
sample types in duplicate experiments and with both probes.
As determined by blind manual counting, cells from all nega-
tive clusters were more than 94% negative, while cells from
positive clusters were more than 96% positive. These data
validate both the number of clusters and the classification
method. This manual validation step is an important quality
control step for the procedure and was designed to identify any
problems arising from the application of 10 clusters and a
threshold based on the negative control (no probe) to different
samples, probes, and labels.

Validation of complete method. The final results of the new
automated image analysis method were validated by compar-
ison to manual counts. Using the automated method, the per-
centages of Bacteria and Archaea in the NF manure, CF
manure, and soil were not significantly different from those
obtained by manual counting (P � 0.05) (Fig. 2). These results
suggest that classification based on FCM is an effective method
for quantification of FISH signals, particularly since this

FIG. 1. Effectiveness of automatic cell recognition. (A and B) Original DAPI image (A) and binarized DAPI mask (B) for NF manure; (C and
D) original DAPI image (C) and binarized DAPI mask (D) for CF manure; (E and F) original DAPI image (E) and binarized DAPI mask (F) for
soil. The black areas in panels B, D, and F represent recognized cells. Scale bar, 10 �m.
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method performed well for two probes targeting populations
present at different levels. Moreover, the fact that the same
threshold could be used for duplicate experiments, and indeed
for different probes with a given label, suggests that the FCM
method is more robust than threshold-based classification of

individual objects. This is presumably because FCM clustering
recovers the intrinsic structure of the fluorescence intensity
data, and the subsequent classification is therefore less sensi-
tive to changes in the threshold.

It is also important to evaluate the accuracy of our results.

TABLE 1. Evaluation of existing threshold-based methods: change in percentage of target cells when
thresholds from duplicate experiment were useda

Samples Probe

Fixed thresholdb Fixed signal-to-noise ratioc

% Target cells
(expt 1 threshold)

% Target cells
(expt 2 threshold)

Change
(%)

% Target cells
(expt 1 threshold)

% Target cells
(expt 2 threshold)

Change
(%)

NF manure Bact0338 42.8 76.0 33.2 45.1 81.9 36.8
Arch0915 15.5 21.1 5.6 14.0 23.0 9.0

CF manure Bact0338 60.0 75.1 15.1 63.0 66.1 3.1
Arch0915 14.0 9.8 �4.2 14.0 5.5 8.5

Soil Bact0338 65.2 79.2 14.0 65.2 73.9 8.7
Arch0915 17.7 32.6 14.9 17.0 31.7 14.7

Avg 14.5 13.5

a Data were obtained for hybridization of ethanol-fixed samples for each probe; experiments 1 and 2 were replicates. The average number of cells per hybridization
was 1,772 in 15 images.

b Fixed thresholds were set based on manual counts for a subset of images and were applied to the maximum intensity above the mean background level.
c Fixed signal-to-noise ratios were set based on manual counts for a subset of images and were the ratio of uncorrected maximum intensity to mean background

intensity.

TABLE 2. Relative cluster sizes and cluster centroids resulting from FCM clustering for ethanol-fixed samples hybridized with Bact0338a

Samples Cluster

Expt 1 Expt 2

Relative cluster
size (%)

Maximum
intensity

Mean
intensity Validated Relative

cluster size
Maximum
intensity

Mean
intensity Validated

NF manure 1 18.83 3.82 1.81 � 17.72 2.05 0.12 �
2 30.07 6.03 3.67 � 32.50 4.53 2.20 �
3 23.07 8.39 5.32 � 20.51 7.38 3.93 �
4 14.37 11.22 6.91 � 10.42 11.47 5.82 �
5 7.30 15.26 9.36 � 6.86 16.91 8.03 �
6 3.54 20.60 12.10 � 4.63 22.54 10.36 �
7 1.78 27.95 16.04 � 3.76 30.45 16.22 �
8 0.64 42.09 19.84 � 2.52 43.11 18.81 �
9 0.27 67.75 25.88 � 0.54 72.12 30.41 �
10 0.12 100.82 26.75 � 0.53 87.27 52.78 �

CF manure 1 31.82 2.81 0.65 � 24.01 2.73 0.62 �
2 28.64 6.52 3.38 � 31.89 6.14 3.32 �
3 17.53 12.11 6.80 � 18.73 10.51 5.82 �
4 10.79 19.70 11.22 � 12.30 16.68 8.45 �
5 6.52 29.37 17.22 � 6.64 25.72 12.49 �
6 2.11 47.24 24.45 � 3.22 37.81 17.08 �
7 1.21 71.29 37.19 � 1.34 57.29 24.45 �
8 0.79 102.42 40.76 � 0.84 87.29 39.82 �
9 0.36 123.96 67.18 � 0.77 143.02 56.66 �
10 0.23 198.15 155.97 � 0.27 203.56 90.83 �

Soil 1 9.87 2.31 0.30 � 10.93 1.64 �0.20 �
2 25.94 4.44 2.33 � 23.54 3.87 1.70 �
3 28.55 6.44 3.86 � 23.64 5.80 3.32 �
4 19.27 8.78 5.54 � 19.13 7.99 4.69 �
5 10.44 11.97 7.89 � 12.89 10.88 6.38 �
6 3.69 17.83 11.17 � 5.20 15.05 8.29 �
7 0.76 28.14 13.02 � 2.78 22.00 10.80 �
8 0.86 36.56 27.52 � 1.15 30.79 16.01 �
9 0.37 52.88 38.96 � 0.52 48.63 25.42 �
10 0.26 87.29 68.66 � 0.23 97.56 15.65 �

a The values in bold type are below the threshold based on the average maximum intensity of cells in negative controls (no probe).
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For example, are the levels of bacterial and archaeal cells in
the typical swine manure sample (CF manure) indeed close to
72.1 and 12.3%, respectively? The limited data available for
such an analysis suggest that the numbers are reasonable. The
most relevant analysis is an analysis of a full-scale anaerobic
sequencing batch reactor treating swine waste, and this reactor
contained similar distributions of Bacteria (65 to 81% of total

small-subunit [SSU] rRNA) and Archaea (9 to 15% of total
SSU rRNA) (3). Cattle manure was found to contain similar
concentrations of Bacteria (72 to 98% of total SSU rRNA) but
lower concentrations of Archaea (0.47 to 7% of total SSU
rRNA) (17, 24).

Concluding remarks. In this study, an optimized dispersion
protocol and an automated, quantitative image analysis proce-
dure were developed for analysis of swine waste samples by
FISH. The dispersion protocol was a necessary initial step,
because the presence of large aggregates of cells prevented
automated detection of individual cells and was responsible for
large variations in fluorescence intensity. The automated im-
age analysis and classification via FCM are faster than previ-
ously described methods that rely on manual calibration and
do not require the extensive experience with computational
methods or the large training data set that is used in more
complicated methods. Together, the methods developed in this
work should facilitate quantitative analysis of FISH images in
complex environmental samples, such as manure samples and
soil samples, particularly when they are used in combination
with automated image acquisition systems (25, 27).
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TABLE 3. Relative cluster size and cluster centroids resulting from FCM clustering for ethanol-fixed samples hybridized with Arch0915a

Samples Cluster

Expt 1 Expt 2

Relative cluster
size (%)

Maximum
intensity

Mean
intensity Validated

Relative
cluster size

(%)

Maximum
intensity

Mean
intensity Validated

NF manure 1 10.20 1.10 0.17 � 28.41 1.94 0.75 �
2 21.48 2.14 0.95 � 34.10 3.56 1.72 �
3 19.46 3.12 1.58 � 16.86 5.38 2.80 �
4 17.03 4.12 2.10 � 10.53 7.95 4.11 �
5 9.37 5.13 2.78 � 5.60 11.56 5.73 �
6 11.60 6.53 3.34 � 2.90 17.05 10.22 �
7 5.80 8.66 4.54 � 0.67 25.51 15.02 �
8 2.64 12.11 5.40 � 0.61 45.59 23.05 �
9 2.17 18.16 8.93 � 0.15 164.89 89.46 �
10 0.24 27.12 24.01 � 0.15 167.32 71.47 �

CF manure 1 17.32 0.81 �0.06 � 13.93 0.81 �0.01 �
2 36.46 1.95 0.69 � 33.85 1.83 0.65 �
3 23.99 3.33 1.55 � 26.92 3.07 1.44 �
4 11.87 5.65 3.04 � 11.14 5.11 2.73 �
5 6.01 9.44 5.62 � 6.29 7.42 4.25 �
6 2.79 14.96 8.12 � 4.34 10.21 6.76 �
7 0.90 23.22 15.29 � 1.61 14.97 8.12 �
8 0.41 45.99 19.86 � 1.14 21.48 13.49 �
9 0.17 115.88 57.07 � 0.62 45.15 16.76 �
10 0.08 235.01 79.63 � 0.16 105.78 50.27 �

Soil 1 6.33 0.79 0.00 � 6.98 0.59 �0.30 �
2 26.22 1.53 0.53 � 13.31 1.12 0.27 �
3 33.73 2.37 1.03 � 16.39 1.63 0.86 �
4 18.37 3.29 1.63 � 16.24 1.75 0.38 �
5 7.77 4.26 2.37 � 20.94 2.34 0.83 �
6 4.12 5.59 3.32 � 16.94 2.51 1.35 �
7 1.98 7.42 4.72 � 7.77 3.47 1.78 �
8 0.83 11.97 6.29 � 1.17 5.89 3.64 �
9 0.48 17.16 10.46 � 0.21 13.02 5.93 �
10 0.19 26.43 17.96 � 0.05 30.10 21.86 �

a The values in bold type are below the threshold based on the average maximum intensity of cells in negative controls (no probe).

FIG. 2. Comparison of FCM clustering and manual counting re-
sults. The error bars indicate the half-range for duplicate experiments.
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